
456 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 2, APRIL 2008

the PA10-6CE utilizing the geometric and flexibility calibration method
described here. We anticipate the combination of a detailed physical
model, and its accompanying control design will provide an accurate
measurement and control system suitable for demanding dynamic ap-
plications with the PA10-6CE robot arm.
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Discretization of a Continuous Curve

Sean B. Andersson

Abstract—We consider the problem of approximating a finite-length
continuous curve by a piecewise linear one whose segments are assumed to
be connected by 2 DOF joints. We solve the problem under the assumption
that the endpoints of the line segments lie on the continuous curve. Analyt-
ical expressions for the relative orientations of each pair of line segments as
a function of a single rotational DOF are found. This angle can be chosen
arbitrarily or used to optimize a secondary task. The motivating applica-
tion for this paper is the control of a snake-like robot using gaits designed
from shape primitives.

Index Terms—Kinematics, snake-like robot.

I. INTRODUCTION

In this paper, we consider the problem of approximating a continu-
ous, finite-length 3-D curve with a piecewise linear one. The discrete
curve consists of a sequence of blocks, each of which is connected to
a line segment at its center by a revolute joint. Each internal block is
connected to two line segments, and we assume that the joint axes are
orthogonal, yielding a 2 DOF joint. We simplify the problem by as-
suming that the center of each block lies on the continuous curve. The
location of these points along the curve to be approximated are found
numerically using a bisection search method. Given these locations,
we derive expressions for the joint angles as a function of a single
DOF, namely a rotation of the first segment around the axis defined
by its endpoints. This rotation can be either chosen arbitrarily or used
to optimize some secondary task. The algorithm for the calculation of
the joint angles is O(n) in complexity where n is the number of line
segments in the discrete curve.

The motivation for this research lies in the control of snake-like
(or hyperredundant) mobile robots. This class of robot, pioneered by
the active-cord mechanism of Hirose [1], provides a flexibility that is
difficult or impossible to achieve with other locomotion modalities.
The algorithm presented here can also be used for the control of a hy-
perredundant manipulator. These manipulators have the capability to
perform unconventional tasks such as pipeline inspection, minimally
invasive surgery [2], and whole-arm manipulation [3]. The very flexi-
bility of such systems make them difficult to control. Many redundancy
resolution schemes utilize some form of inverse of the Jacobian, often
coupled with numerical optimization [4]–[6]. However, due to the very
large number of DOFs for hyperredundant robots, the computational
burden of these techniques is generally prohibitive.

An alternative approach is to perform path planning for the robot
using a continuous-curve approximation. This is coupled with a fitting
process for determining the joint angles such that the robot takes on
the desired shape [7]–[11] or by determining the sequence of joint
angles such that the robot extends outward along the path [12], [13]. In
many cases, the fitting is achieved through numerical minimization of a
distance function between the continuous curve and the robot. In [14],
the authors avoid the need to directly solve the inverse kinematics
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problem by deriving a control law for the joints such that the robot
converges to the desired shape.

The complexity of control is exacerbated in the mobile robot setting
since locomotion is achieved through interaction with the environment.
One general approach useful in this setting is the notion of gait-based
control [15], [16]. This technique has been applied successfully to
many novel locomotion systems, including snake-like [8], [17]–[19],
eel-like [20], and polychaete annelid-like robots [21]. One can view a
gait as a sequence of shapes that the mechanism must take on. In many
cases, this sequence is driven by the unknown and possibly changing
environment, and therefore, cannot be known ahead of time. However,
there are scenarios in which the sequence can be designed a priori.
These include ascending or descending a stairway, climbing a pole,
or maneuvering along a predetermined path using a pulse-like gait
(see [7]).

The algorithm presented in this paper assumes that a desired shape
is given, specified as a 3-D curve, and solves the inverse kinematics
problem to achieve that shape. Because of this assumption, it is most
applicable to the scenarios described before. In addition, due to its
computational efficiency (as demonstrated in Fig. 3), it is particularly
useful for a simulation environment. The results detailed here are for
serial-type robots comprising links coupled by 2 DOF joints, and it is
hoped that the general approach can be extended to other designs, such
as serial robots with 3 DOF joints [22], serial mechanisms including
prismatic joints [23], and continuum robots comprising sections of
constant curvature [24].

II. PRODUCT OF EXPONENTIALS FORMULATION

We give here a brief description of the product of exponentials
(POE) representation for kinematic chains [25]. The POE approach
was chosen over the Denavit–Hartenberg representation because its
compact form, geometric significance of the twists, and continuous
nature make the kinematic equations relatively simple to manipulate.
For a detailed discussion of the merits of the POE approach, see [26].

A serial kinematic chain is a series of rigid links connected by single
DOF joints. Joints with more than one DOF are modeled by allowing
the distance between subsequent joints to be zero. A frame is attached
to each joint, and the position and orientation of each of these frames
is specified with respect to a world frame. The configuration of the jth
frame with respect to the world frame is denoted gw ,j with

gw ,j =

[
Rw ,j pj

0 1

]
(1)

where Rw ,j ∈ SO(3) is a rotation matrix and pj ∈ R
3 is the vector

from the origin of the world frame to the origin of the jth frame.
Similarly, gi,j denotes the configuration of the jth frame with respect
to the ith frame. These mappings can be concatenated, for example,
gw ,j−1gj−1 ,j = gw ,j .

Because subsequent links are connected by a single DOF, the con-
figuration of the jth frame with respect to the previous one, gj−1 ,j ,
is given by a one-parameter family of transformations. The parame-
ter is referred to as the joint angle. To represent this one-parameter
family, recall that any element of SE(3) can be described as a screw,
that is, a rotation and translation along some axis. In turn, a screw can
be described by the direction of rotation and translation, known as a
twist, and by the amount of twist, θ. When the screw describes the
configuration gj−1 ,j , then the joint angle is precisely θj−1 .

A twist and a screw can be expressed using the hat map, a notation
used here in two different ways. First, it denotes a mapping from R

3 into

the space of 3 × 3 skew-symmetric matrices [the Lie algebra so(3)]:

ω̂ =

[
ω1

ω2

ω3

]̂
=

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
. (2)

Second, the hat map denotes a mapping from R
6 into the Lie algebra

se(3). With v, ω ∈ R
3 , we have

[
v
ω

]̂
=

[
ω̂ v
0 0

]
. (3)

The twist for joint j is denoted by ξj . For a revolute joint, the twist is
given by

ξj =

[
−ωj × qj

ωj

]
(4)

where ωj is a unit vector along the axis of rotation and qj is any point
on that axis. For a prismatic joint, the twist is ξj = [ vT

j 0 ]T with vj

being a unit vector along the axis of translation.
The screw corresponding to the jth joint is given by the exponential

mapping of the twist into SE(3). It can be shown that if ξj corresponds
to a revolute joint, then

eξ̂ j θ j =

[
eω̂ j θ j (1I − eω̂ j θ j ) (ωj × vj )

0 1

]
(5)

where 1I is the identity matrix, eω̂ j θ j is the matrix exponential of
the skew-symmetric matrix ω̂j θj , and vj = −ωj × qj . If the joint is
prismatic, then

eξ̂ j θ j =

[
1I vj θj

0 1

]
. (6)

We can now express the rigid transformation of the first j joints with
respect to the world frame by concatenation. Let θ denote the vector of
all the joint angles and let gw ,j (0) denote the configuration of the jth
frame when all the joint angles are set to zero. Then

gw ,j (θ) = eξ̂ 1 θ1 eξ̂ 2 θ2 . . . eξ̂ j θ j gw ,j (0). (7)

III. KINEMATICS

In this paper, we assume that the discrete curve consists of a sequence
of blocks connected by line segments. Each block is connected at its
center to the endpoint of a line segment by a single DOF revolute
joint. Internal blocks are connected to two segments along orthogonal
axes. We attach to each joint a frame with origin at the center of the
corresponding block. The local x-axis is defined to point toward the
center of the subsequent block and the y- and z-axis are defined by the
axes of rotation for the joints. This is illustrated in Fig. 1 in which two
links and three joints are shown. Joints are labeled from 1 to N . The link
lengths Li , i = 1, . . . , N − 1, are defined to be the distances between
subsequent joint centers with even numbered links having length zero.
Each odd (even)-numbered joint rotates about the local z- (y-)axis.

To describe the internal shape of the discrete curve, we specify
the configuration of all the frames with respect to the first frame,
using (7) where the world frame is replaced with the first frame. The
transformation from the first frame to the world may be viewed as a
(fixed) joint with associated transformation gw ,1 . Thus,

gw ,j (θ) = gw ,1 eξ̂ 1 θ1 . . . eξ̂ j θ j g1 ,j (0). (8)
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Fig. 1. First two links and three joints of a kinematic chain. The first joint
rotates by angle θ1 around the z1 -axis, the second by θ2 around the y2 -axis,
the third by θ3 around the z3 -axis, and so on.

Since subsequent links lie along the local x-axis, we have

g1 ,j (0) =

 1 0 0
∑j−1

k=1 Lk

0 1 0 0
0 0 1 0
0 0 0 1

 (9)

where it is understood that the sum is 0 when j = 1. Each joint is a
revolute joint with the axis of rotation given by

ωj =

{
(0, 0, 1)T , j = 1, 3, . . .
(0, 1, 0)T , j = 2, 4, . . . .

(10)

To express the twist of the jth joint as in (4), we choose qj to be the
origin of frame j (in the reference configuration), i.e.,

qj =

(
j−1∑
k=1

Lk , 0, 0

)T

. (11)

The twist of the jth joint is then

ξj =



(
0,−

j−1∑
k=1

Lk , 0, 0, 0, 1

)T

, j = 1, 3, . . .(
0, 0,

j−1∑
k=1

Lk , 0, 1, 0

)T

, j = 2, 4, . . . .

(12)

From (5), the screws for the joints are given by

eξ̂ j θ j =

 cθj −sθj 0
(∑j−1

k=1 Lk

)
(1 − cθj )

sθj cθj 0 −
(∑j−1

k=1 Lk

)
sθj

0 0 1 0
0 0 0 1

 (13)

for j = 1, 3, . . . and

eξ̂ j θ j =

 cθj 0 sθj

(∑j−1
k=1 Lk

)
(1 − cθj )

0 1 0 0
−sθj 0 cθj

(∑j−1
k=1 Lk

)
sθj

0 0 0 1

 (14)

for j = 2, 4, . . .. Note that, in (13) and (14), we have introduced the

shorthand notation cθj
�
= cos (θj ) and sθj

�
= sin (θj ).

IV. APPROXIMATING A CURVE

Let pd (·) : [0, L] → R
3 be a continuous 3-D curve. We assume that

the position of the first frame in the discrete curve is given by pd (0)
and that the orientation of this frame can be specified freely. We define
the shape approximation problem via the following two subproblems.

Subproblem 1: Given a parameterized curve pd (·) and a sequence
of line segments of lengths L1 , . . . , LN , find the values 0 = t0 ≤
t1 ≤ · · · ≤ tN of the parameter such that ‖pd (tj+1 ) − pd (tj )‖ = Lj ,
j = 1, . . . , N , where ‖ · ‖ denotes the standard Euclidean norm.

Subproblem 2: Given the tj solving subproblem 1, find the orien-
tation of the first frame and the relative orientations of the line seg-
ments such that the endpoints of the jth line segment are at pd (tj ) and
pd (tj+1 ) for j = 1, . . . , N .

In what follows we present an analytical solution of the second
subproblem that is O(n) in complexity and a numerical solution of the
first subproblem relying on a bisection search.

A. Solving Subproblem 1

Subproblem 1 reduces to a sequence of 1-D searches along the
desired curve. The Euclidean distance between two points pd (tj ) and
pd (t), t > tj , is in general a nonlinear function of t; for each j, we seek
the first t such that ‖pd (t) − pd (tj )‖ = Lj . If tj+1 can be bracketed,
then it can be found using a bisection search. To bracket the solution,
we find t+ such that tj ≤ tj+1 ≤ t+ as follows.

1) Initialize: Choose dt such that there is at most one t ∈ [tj , tj +
dt] with ‖pd (t) − pd (tj )‖ = Lj . Set t = tj + dt.

2) Termination: If ‖pd (t) − pd (tj )‖ ≥ Lj , then terminate.
3) Iterate: Set t = t + dt and go to step 2).
The appropriate value of dt depends on the curve and parametriza-

tion. In practice, one can take dt much smaller than Lj . With tj+1

bracketed, a numerical bisection search can be used to find its value to
within a desired accuracy.

B. Solving Subproblem 2

To solve for the joint angles, we first solve for the configuration of the
initial joint with respect to the world frame, revealing in the process that
a single DOF remains that can be chosen arbitrarily or used to optimize
a secondary task (see Theorem 4.1). Given this initial configuration,
we then show that the joint angles can be expressed analytically. The
solution is a set of recursive inverse kinematic equations that depend
on the arbitrary DOF (see Theorem 4.2).

1) Configuration of the First Frame: The transformation gw ,1 from
the world frame to the first frame can be viewed as a sequence of (fixed)
joints: a translation of length ‖pd (t0 )‖ along the line from the origin to
pd (t0 ), a rotation θz 0 about the z-axis of the first frame, a rotation θy 0

about the y-axis of the first frame, and finally, a rotation θx 0 about the
x-axis of the first frame. We assume that when each of these “joints”
is at the zero position, then the world frame and the first frame are
aligned. Thus,

gw ,1 = eξ̂ p d ( t 0 ) ‖pd (t0 )‖eξ̂ z 0 θz 0 eξ̂ y 0 θy 0 eξ̂x 0 θx 0 . (15)

Theorem 4.1: Define pi,j
�
=pd (ti ) − pd (tj ). Then, the angle θx 0 is

arbitrary while the angles θy 0 and θz 0 are

θz 0 = atan2 ([p1 ,0 ]2 , [p1 ,0 ]1 ) (16a)

θy 0 = atan2
(
−[p1 ,0 ]3 ,

(
([p1 ,0 ]1 )

2 + ([p1 ,0 ]2 )
2)1/2

)
(16b)

where [p]i denotes the ith component of p.
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Proof: As described in Section III, the point pd (t1 ) lies L1 units
along the x-axis of the first frame. Thus,[

pd (t1 )
1

]
= gw ,1 [ L1 0 0 1 ]T .

Using (15) in this equation, premultiplying both sides by

e−ξ̂ p d ( t 0 ) ‖pd (t0 )‖ and recognizing that a rotation about the x-axis leaves
[L1 , 0, 0]T invariant yields

e−ξ̂ p d ( t 0 ) ‖pd (t0 )‖
[

pd (t1 )
1

]
= eξ̂ z 0 θz 0 eξ̂ y 0 θy 0

L1

0
0
1

.

Using the form of a screw given by (5) and (6), this becomes

[
pd (t1 ) − pd (t0 )

1

]
=

[
p1 ,0

1

]
=

L1 cθz 0 cθy 0

L1 sθz 0 cθy 0

−L1 sθy 0

1


which yields the result. �

2) Determination of Joint Angles:

Theorem 4.2: Define ∆pj
�
=R−1

w ,j−3 (pd (tj ) − pd (tj−2 )) and let j ≥
4 be even. Then, θ1 = 0 and the remaining joint angles are given by
the recursive equations

θj−2 = atan2
(
− [∆pj ]3 , [∆pj ]1

)
, (17a)

θj−1 = atan2
(
[∆pj ]2 ,

(
[∆pj ]

2
1 + [∆pj ]

2
3

)1/2
)

. (17b)

Proof: By construction of the world orientation of the first frame, its
x-axis is aligned to point to pd (t1 ). Therefore, θ1 = 0. Since j is even,
the point pd (tj ) is Lj−1 units along the x-axis of frame j − 1. Assume
that the first j − 3 angles are known and write

g−1
w ,j−3

[
pd (tj )

1

]
= g−1

w ,j−3gw ,j−1 [ Lj−1 0 0 1 ]T (18)

where we have premultipled by g−1
w ,j−3 to isolate the unknown joint

angles. From (7), we have

g−1
w ,j−3gw ,j−1 = (g1 ,j−3 (0))−1 eξ̂ j −2 θj −2 eξ̂ j −1 θj −1 g1 ,j−1 (0).

To calculate the left-hand side of the equation, recall from (9) that the
origin of frame j − 3 is at pd (tj−3 ). We then use (1) to write

g−1
w ,j−3 =

[
R−1

w ,j−3 −R−1
w ,j−3pd (tj−3 )

0 1

]
.

By definition, R−1
w ,j−3 rotates the world frame into the frame j − 3.

Using this, we can express the point pd (tj−3 ) in terms of the subsequent
point pd (tj−2 ) and write g−1

w ,j−3 as

g−1
w ,j−3 =

R−1
w ,j−3 −R−1

w ,j−3pd (tj−2 ) −

[
Lj−3

0
0

]
0 1

 .

Using these expressions for g−1
w ,j−3gw ,j−1 and g−1

w ,j−3 in (18), we find

[
R−1

w ,j−3 (pd (tj ) − pd (tj−2 ))
1

]
=

 Lj−1 cθj−2 cθj−1

Lj−1 sθj−1

−Lj−1 sθj−2 cθj−1

1

 .

Using the definition of ∆pj , this yields the stated result. �

Fig. 2. Thirty-joint piecewise linear curve in the shape of the Bézier curve
(19). The joint frames have been omitted for clarity.

Note that the next rotation matrix R−1
w ,j−1 can be found without

doing a matrix inversion using

R−1
w ,j−1 = Rj−1 ,j−2Rj−2 ,j−3Rj−3 ,w

= e−ω̂ j −1 θj −1 e−ω̂ j −2 θj −2 R−1
w ,j−3

where ωj is the axis of rotation for joint j. The rotation matrix R−1
w ,j−3

is known from the previous step.

C. Example

As an example, consider the Bézier curve

pd (t) =
6∑

k=0

pdk

6!
k!(6 − k)!

tk (1 − t)6−k , 0 ≤ t ≤ 1 (19)

with the seven control points pdk[
4
4
0

]
,

[
4
−4
0

]
,

[−4
−4
0

]
,

[−4
4
0

]
,

[
0
0
4

]
,

[
4
−4
6

]
,

[
4
4
8

]
.

We approximated this using a piecewise linear curve with 30 joints
where each odd-numbered link had length 1.25 units and each even-
numbered link had length 0.

The desired joint positions and the joint angles were determined
using the algorithm described before. The angle θx 0 was chosen ar-
bitrarily to be π/4. The Bézier curve and the resulting points p(tj ),
j = 0, . . . , 29, as well as the resulting shape of the discrete curve are
shown in Fig. 2.

D. Performance

The algorithm consists of two stages: first, a fast bisection search
to determine the positions of the joints, and second, a set of equations
giving the joint angles. The computation required to find a pair of joint
angles using (17) is independent of the total number of joints. Adding
another pair of 1 DOF joints simply adds two more equations to be
solved; therefore, the computational complexity of the analytical stage
is O(n).

To investigate the computational performance of the algorithm as a
whole, the Bézier curve (19) was approximated using piecewise linear
curves with 4–100 joints. All calculations were done in Matlab (v.
7.1) on an Apple Mac Pro running OS X (v. 10.4.11) with 3 GB of
RAM. The results are shown in Fig. 3. The total run time with 100
joints was less than 35 ms with most of the computation time spent
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Fig. 3. Execution time in Matlab of the algorithm for the Bézier curve. Even
for a curve with 100 joints, the total execution time was less than 35 ms.

finding the desired locations of the joints. The joint value calculation
time increases linearly with the number of joints, illustrating the O(n)
nature of the computation.

We note that the time to complete the numerical search could be
reduced significantly if prior information about the approximate joint
locations were known. For example, if the algorithms were used to
generate joint angles as a function of time for a varying curve, the
solution from the previous time step could be used to initialize the
numerical search.

E. Comparison With Previous Methods

Existing fitting techniques for approximating a continuous curve
with a discrete one rely on the numerical solution of a nonlinear prob-
lem. Initial efforts based on a least-squares optimization required the
simultaneous solution of a system of nonlinear equation and was ap-
plicable only to planar robots with revolute joints and to a specific
variable geometry truss [7]. This method was improved in [10] with
a technique similar to the one presented here. Their algorithm also
used a numerical search along the continuous curve for the loca-
tions of the joints followed by a set of recursive equations for the
joint angles. However, the joint angles were implicit in the nonlin-
ear equations, and thus, a numerical solution was required. By con-
trast, the algorithm presented here solves for the joint angles explic-
itly [cf., (17)] and makes explicit the single rotational DOF in the
solution.

An entirely different approach to solving the curve fitting prob-
lem is developed in [14]. The authors consider a snake-like robot
modeled by a second-order dynamic system and develop a nonlin-
ear control law for the joint torques such that the joint angles con-
verge to the desired values. This approach is well suited for shape
control of hyperredundant mechanisms. However, to determine what
the final joint angles will be requires numerical integration of the re-
sulting equations. This will in general be significantly slower than
the method described in this paper. In settings where one wishes to
know the final configuration as quickly as possible, such as in sim-
ulations, user design of shapes, or preliminary design and verifica-
tion of shape-based trajectories, the technique introduced here is to be
preferred.

V. CONCLUSION

In this paper, we have considered the problem of approximating a
continuous 3-D curve with a piecewise linear one. A bisection search
together with a closed-form solution for the relative orientations be-
tween the segments of the discrete curve was derived. The method can
be used to determine the joint angles for a snake-like robot so that it
takes on a desired shape, and it is fast enough to be implemented in
real time.
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Admittance Selection Conditions for Frictionless
Force-Guided Assembly of Polyhedral Parts in Two

Single-Point Principal Contacts

Shuguang Huang and Joseph M. Schimmels

Abstract—The admittance of a manipulator can be used to improve
robotic assembly. If properly selected, the admittance will regulate a contact
force and use it to guide the parts to proper positioning. In previous work,
procedures for selecting the appropriate admittance for single principal
contact (PC) cases were identified. This paper extends this research for some
of the two PC cases—those for which each contact occurs at a single point.
The conditions obtained ensure that the motion that results from frictionless
contact always instantaneously reduces part misalignment. We show that,
for bounded misalignments, if an admittance satisfies the misalignment-
reducing conditions at a finite number of contact configurations, then the
admittance will also satisfy the conditions at all intermediate configurations.

Index Terms—Assembly, compliance selection, multiple-point contact,
spatial admittance.

I. INTRODUCTION

In robotic assembly, admittance control has been used to provide
force regulation and force guidance. The admittance changes contact
forces into changes in the velocity of the body held by the manipulator.
If properly designed, the manipulator admittance will cause the held
part to move toward the desired position, thus correcting misalignment.
Here, procedures for selecting the appropriate manipulator admittance
for polyhedral part assembly subtasks are identified.

A simple form of admittance, a linear admittance control law [1] is
considered. For spatial applications, this admittance behavior has the
form

v = v0 + Aw (1)

where v0 is the nominal twist (a six-vector), w is the contact wrench
(force and torque) measured in the body frame (a six-vector), A is the
admittance matrix (a 6 × 6 matrix), and v is the motion of the body.
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When the held body is in contact with its mating part, the contact
force will yield a motion by control law (1). An admittance design
objective is that it achieves force assembly, i.e., for any given contact
state, the admittance always leads to a motion that reduces the mis-
alignment. Since the error-reducing motion is generated by the contact
force, no sensors or actuators are needed. A desired admittance can be
realized with either a passive compliant mechanism mounted on the
end-effector of the manipulator [2] or through robot control [3].

Similar to previous work [4]–[6], in this paper, we consider a mea-
sure of error based on the Euclidean distance between an arbitrarily
chosen single (fixed) point on the held body and its location when prop-
erly positioned. Since there is no “natural metric” for finite spatial error
of a body, the error measure used is body-specific [7]. Using this mea-
sure of misalignment, the error-reduction condition can be expressed
mathematically as

dT v = dT (v0 + Aw) < 0 (2)

where d (a six-vector for spatial motion) is the line vector from the
selected point at its properly mated position to its current position and
w is the contact wrench. Force assembly [1] requires that, at each
possible misalignment, the contact force yields a motion that reduces
the misalignment. As such, to achieve an error-reducing motion for a
specific contact state, condition (2) must be satisfied for all possible
misalignments in that contact state.

Since there are an infinite number of configurations within a given
contact state, it is impossible to impose the error-reduction condition
(2) on all configurations. Our objective is to identify a set of conditions
that are imposed on the admittance at a finite number of configurations
to ensure error-reducing motion for all configurations associated with
a given contact state. Once these conditions are established, they can
be used to guide the search for an appropriate admittance.

Others addressed the selection of an admittance for assembly
[8]–[11]. The force-assembly approach used in this paper differs from
the others’ in that: 1) it applies to any two polyhedral parts and 2)
ensures that error-reducing motion is achieved.

This paper is an extension of our previous work [6] in which suf-
ficient conditions imposed on an admittance were used to ensure the
force assembly of polyhedral parts for each of the six single prin-
cipal contact (PC) cases. In this paper, conditions on an admittance
for parts with two single-point PCs are identified. The overall admit-
tance selection strategy is based on problem decomposition. Since for
polyhedral parts, the set of assembly contacts can be decomposed into
a set of contact states, the admittance for the assembly can be se-
lected by selecting the appropriate admittance for each contact state.
If sufficient conditions for each contact state in the assembly task are
satisfied simultaneously, successful assembly can be ensured with-
out having to determine in real time which contact state is being
encountered.

In the two-PC cases, due to geometric constraints, the generalized
coordinates used in [6] for each contact point are now coupled.This cou-
pling is highly nonlinear and part geometry-specific. To address this in a
rigorous and geometry-independent way, we consider the coupling that
occurs between the two contact forces, but ignore the coupling of the
two sets of coordinates. In doing this, a space of contact configurations
larger than possible is considered. Due to the coupling of the two con-
tact forces, the two sets of conditions developed independently for each
of the two single-PC cases are not equivalent to the set of conditions
developed for the corresponding two-PC case. Thus, in developing the
admittance selection conditions for the two-PC cases, the contact forces
associated with each contact are considered simultaneously.
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