Electrical characteristics of p*-Ge/(N-GaAs and N-AlGaAs) junctions
and their applications to Ge base transistors
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Electrical properties of p™ -Ge/N-AlGaAs (and N-GaAs) are studied as a function of
temperature and current conduction mechanisms are outlined. Junctions with Ge grown on
GaAs and AlGaAs show ideality factors of unity and 1.03 at room temperature, respectively.
Temperature-dependent curreni-voltage (f-¥) and room-temperature capacitance-voltage
(C-¥) characterization are employed to determine the built-in volitage (¥,; ) of the two diode
structures. For Ge/GaAs, a valence-band discontinuity of 8.49 + 0.05 eV is measured which is
in good agreement with the value deduced from photoemission studies. Implications of p™-Ge
base in AlGaAs/Ge/GaAs double-heterojunction bipolar transistors (DHBTSs) are discussed.

Since the inception of heterojunction bipolar transistors
(HBTs), efforts have been under way to improve perfor-
marnce by means of different material systems and device
structures. Critical parameters affecting device performance
are base doping, base contact resistance, and band discontin-
uity at the base-emitter junction. The semiconductor germa-
nium has excellent potential to improve the performance of
GaAs/AlGaAs based HBTs. Ge has a higher hole mobility
and can be doped more heavily than any other device grade
semiconductor. Heavily doped Ge could be used as & low-
resistance base for #-p-n HBTs in the GaAs material sys-
tem."™* Higher injection efficiencies and lower base contact
resistances should be attainable since Ge has a smaller band
gap than GaAs. An AlGaAs/Ge emitter-base structure
wouid combine the large valence-band discontinuity with
the large minority carrier diffusion length required for high
performance n-p-n HBTs. Defect-free Ge can be grown epi-
taxially on GaAs (100)*7 due to the nearly perfect lattice
match between the two systems.

Earlier, we reported encouraging ideality factors for
heavily doped Ge(p = 1x 10" em™*) grown on lightly
doped GaAs(n = 7x10'* cm 7*).% In this letter we extend
this study to improved Ge/GaAs as well as p*-Ge/N-
AlGaAs heterojunctions. Excellent forward and reverse
characteristics in present diode structures allowed the inves-
tigation of current transport mechanisms via the tempera-
ture  dependence of curreni-voltage relationship.
Capacitance-voltage and temperature-dependent I-¥ char-
acteristics were used to determine the built-in voltages and
the heterojunction band discontinuities. Nearly idea! char-
acteristics of Ge/(AlYGaAs junctions suggest that this sys-
tem can be incorporated in high performance HBTs. Pre-
liminary results for an emitter up Al ,, Ga, ,, As/Ge/GaAs
N-p-n double heterojunction bipolar transistor (DHBT) ob-
tained in our laboratory are encouraging with a dc current
gain of over 250.

The (Al)GaAs growth was performed on a Perkin-
Elmer 430 molecular beam epitaxy system while Ge growth
took place in an adjacent deposition chamber. Samples re-
mained under vacuum during the several minutes of growth
interruption required for transfer between chambers. An ini-
tial buffer layer of 1 um Si-doped GaAs with a carrier con-
centration of n = 5 16" cm ™ * was grown on semi-insulat-
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ing GaAs(100) substrates misoriented 4° towards [011].
For the AlGaAs/Ge heterojunction, 0.2 pm of
Al,,Ga,, As{n = 5% 10" cm™ ?) was deposited and then
capped by a few monolayers of undoped GaAs, while the
GaAs/Ge junction had 0.2 um of GaAs doped less heavily
(n=5x 10" cm ™). Nominally 500 A of Ge was then de-
posited, the growth being interrupted several times for Ga
delta doping. Total Ge doping concentration was deter-
mined by transmission line measurements to be p~ 10"
cm "7 and p~ 10" cm ™ for Ge/AlGaAs and Ge/GaAs di-
odes, respectively.

After growth, diodes with various mesa sizes were fabri-
cated by standard photolithographic and wet etching tech-
niques. The a-type contacts were formed by evaporating
AuGe/Ni/Au on nt-GaAs and alloying at 450 °C. Relying
on its small band gap, p-type ohmic contacts for Ge formed
by palladium plating.®

The dicde structures discussed here have Ge grown on
the ITI-V material in order to study the intrinsic properties of
these junctions while avoiding the difficulties related to po-
iar on nonpolar epitaxy. The Ge/GaAs diodes exhibit nearly
ideal forward characteristics and low leakage reverse bias
characteristics (leakage current density <8x10™° A/cm?
at 5V, and ~3X10° ? A/cm” at 15 V reverse bias) with a
sharp breakdown at =~ 17 V. The corresponding electric field
at this breakdown voltage is 4.3X10° V/cm which ap-
proaches the theoretical breakdown for GaAs (45X 10° V/
cm).” Hard breakdown characteristics in a p-n junction, as
opposed to a soft breakdown characteristic,” is one desirable
property for good transistors, particularly for power devices.

Typical I-V characteristics of the p-Ge/N-AlGaAs
junction at various temperatures are shown in Fig. 1. At
room temperature, the ideality factor is as low as 1.03 and
mimimum ideality factor range extends over 4-5 decades of
current. This behavior suggests that current transport is due
almost entirely to diffusion or thermionic emission. How-
ever, the ideality factor increases with decreasing tempera-
ture. In Fig. 2, the minimum ideality factor » and logarith-
mic slope constant o{ = nk7T /q) versus temperature for
Ge/Gahs and Ge/AlGaAs junctions is plotted. The larger
ideality factor for AlGaAs suggests that recombination and
tunneling current components are more important than for
Ge/GahAs. This is expected because of the higher doping
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FIG. 1. Typical current-voltage characteristics of Ge/AlGaAs diodes at
various temperatures {device size is 125X 75 gm?).

level and larger band discontinuity of the Ge/AlGaAs com-
pared to Ge/GaAs. At low temperatures the AlGaAs
hetercjunction shows a dominant tunneling current as in-
ferred from the ideality factor in excess of two and the almost
constant ¢. The tunneling may be zided by imperfections
across the conduction-band barrier.

Figure 3 shows the dependence of saturation current on
inverse temperature for both diodes. Saturation current val-
ues are determined by extrapoiating the minimum ideality
factor range of {-¥ curves o intersect with the current axis.
For an abrupt heterojunction, the dependence of the satura-
tion current on the temperature 7T is given as
Iyocexpl — g¥, kT, Le, log Iy« Vy, /T, Therefore, the
slopes of the curves in Fig. 3 can be used (o determine the
corresponding ¥, values for the abrupt Ge/GaAs and Ge/
AlGaAs junctions. The excellent linearity of data points in
Fig. 3 is another indication of nearly pure thermionic cur-
rent and high quality junctions. To further investigate the
band alignment of these junctions, capacitance-voltage (C-
¥} measurements were also carried out. Buili-in voltages
were determined by means of the intercept method,'’ ie.,
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FIG. 2. Ideality factor and logarithmic stope constant for Ge/GaAs (solid)
and Ge/AlGaAs (dashed) as a function of temperature. The curves are
drawn to show the trend and do not represent any theoretical fit.
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FIG. 3. Plots of logarithm of saturation current vs inverse of temperature
for Ge/GaAs (&) and Ge/AlGaAs (B) diodes (device sizes are 125 % 75
pm?).

extrapolating linear 1/C ? versus reverse bias curves into the
forward bias region and determining the intercept with the
voltage axis Vi, (V, = Vi, — 257 /g).

Table I lists the ¥, values determined by /-V and C-V
measurements. The built-in voltage values from our C-V
measuremernits were used to calculate the corresponding con-
duction- and valence-band discontinuities for the Ge/GaAs
and Ge/AlGaAs diodes as

Ny
AE, ~ +ETF ) <N

Cn

N
+KkTF E - — gV,
\NVP
(1)

where F [, represents the inverse Fermi function; N, and
N, are donor and acceptor densities, respectively; N, and
Ny areconduction-and valence-band density of states for ¥
and p regions, respectively; and £, is the band gap of the &/
region. A comparison to Ge/GaAs valence-band discontin-
uity values obtained independently from synchrotron radi-
ation photoemission'' and x-ray photoemission spectrosco-
py'* "3 is also included in Table I. We note good agreement of
our results to within the experimental uncertainty with the
published data. To the best of our knowledge, the only re-
ported band discontinuity values for the AlGaAs/Ge system
are from C-¥ measurements'* for a junction with an alumi-
num mole fraction of 6.17. This mole fraction is fairly close
to our value of 0.2, and a direct comparison results in very
good agreement (Table I).

The built-in voltage values deduced by I-¥ vs 1/7 and
C-¥V measurements will yield consistent results for abrupt
junctions. In graded junctions over a distance much smailer
than the depletion region, the buiit-in voltage as determined
from -V measurements should still be the same as in the
abrupt case.'” For a graded junction, however, the -¥ mea-
surements will reflect the effective barrier height opposing
the minority-carrier injection instead of the true built-in vol-
tage. The current for ¥-p junctions is mainly due to electrons
injected from large band-gap material; therefore, the effec-
tive barrier height will be determined by the conduction-
band configuration.

As seen in Table I, very good agreement between I-¥
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TABLE 1. Band discontinuity and built-in voltage values determined from /-F and C-V measurements for Ge/GaAs and Ge/AlGaAs diodes in comparison
with AE, values from Refs. 11 and 12 for Ge/GaAs and band discontinuities from Ref. 14 for Ge/AlGaAs.

Diode v Ref. i1 Ref. 12 Ref. 14
vV, (V) 0.79 0.85 -1 0.03
Ge/GaAs AE, (eV) 0.4 + 0.05 0.46 0.05 0.56 + 0.04
AE,(eV) 0.28 + .05
¥, (V) 0.66 1.00 4 0.03
Ge/AlGaAs AE (eV) 0.69 +- 0.05 0.71
AE. (eV) 0.33 4 0.05 0.31

and C-V methods exists for the Ge/GaAs case. This suggests
a fairly abrupt junction relative to the GaAs depletion width
of = 1500 A. As expected, the ¥, from C-V for Ge/AlGaAs
is larger than that of Ge/GaAs. However, when deduced
from I-¥ measurements with abrupt junction assumption,
V.. 1s considerably smaller for Ge/AlGaAs. This is most
likely due to cross diffusion and resultant grading at the in-
terface. Since thie AlGaAs is more heavily doped than the
GaAs in the Ge/GaAs diode, the depletion width is only
~500 A which corresponds to a conduction-band spike
width above the Ge conduction band of =80 A. If Ge diffu-
sion into the AlGaAs were 10 exceed this 80 A‘l, the potential
spike in the conduction band would be altered drastically.
Such diffusion resuits in a reduced effective barrier (Ad.q)
opposing electron injection from AlGaAs intc Ge since
Ads = gV, — AE., AE_ being the conduction-band dis-
continuity. In this case, the saturation current dependence
on temperature is log {, o Ad,4/ 7. The band discontinuity
value obtained from C- ¥V measurements is then used to deter-
mine Ad.y = 0.67 eV, which is in agreement with that de-
duced from /- F'measurements. The above argument can also
be used to explain the slightly smaller ¥,; values cbtained
from I-¥V measurements as compared to C-V in the Ge/
GaAs case. However, since the depletion region is much
wider, we expect only a small deviation from the actual bar-
rier. For example, if we assume 100 A of diflfusion at the
interface, the reduction of the conduction-band spike is less
than 100 meV. This reduces the effective barrier to
0.75 4 0.05 eV as compared to 0.79 eV determined from -V
measurements for the Ge/GaAs diode. Despite the agree-
ment found through the nonabrupt interface discussion, oth-
er possibilities such as tunneling current for a heavily doped
Ge/AlGaAs junction may play a part in deviations in the ¥y,
determined by I-V measurements. Tunneling will effectively
reduce the barrier to minority carriers. Since the /-¥ mea-
surements give the effective barrier height opposing the mi-
nority-carrier transport, measured values will be smaller
than the true built-in voltage. Smaller ¥, deduced from I-V
measurements for the Ge/AlGaAs diode compared to the
Ge/GaAs can also be explained as the tunneling being more
dominant for heavily doped junctions.

The measured valence-band discontinuity value for Ge/
AlGaAs(0.69 eV) is much larger than that of GaAs/
AiGaAs (0.10 eV)'® for the same Al mole fraction
(x = 0.2). Therefore, a higher emitter injection efficiency ¥
[y cexp(AE, /kT)] can be expected from the AlGaAs/Ge
emitter-base junction. Once the problems related to polar on
nonpolar epitaxy are solved, this junction is a perfect candi-
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date for high current gain HBTs.

In conclusion, we have demonstrated high quality p* -
Ge/N-{A1YGaAs diode structures grown by molecular
beam epitaxy. Diode characteristics were studied by variable
temperature 7-¥ and room-temperature C-} measurements.
Both diodes exhibited nearly ideal room-temperature cur-
rent transport, while the AlGaAs diode showed a large re-
combination/defect-assisted tunneling current at low tem-
peraiures. From our measurements we deduced band
discontinuity values which are in good agreement with the
available data for Ge/GaAs and Ge/AlGaAs. The nearly
ideal reverse breakdown characteristics for Ge/GaAs and
forward current characteristics of Ge/AlGaAs junctions
suggest Ge as an alternative to GaAs in AlGaAs/GaAs
DHBTSs to improve the present device performances.
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