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Microscopes are natural objects of study in introductory and upper level courses that cover optics
because they are used in most science and engineering disciplines. The solid immersion microscope
has been developed to study a variety of physical systems with high resolution and we suggest its
inclusion in upper level optics courses. We briefly describe the solid immersion microscope in the
context of geometrical optics and a desktop demonstration. We use the angular spectrum
representation to calculate the focal fields produced by a conventional microscope and a solid
immersion microscope. We also suggest a simple model for lens aberration and perform numerically
the focal field calculations with and without aberrations to enable users to compare the performance
of conventional and solid immersion microscopes. These calculations can help users develop
intuition about the sensitivity of microscope performance to real-world manufacturing tolerances
and to the limitations and capabilities of microscopy. © 2008 American Association of Physics Teachers.
�DOI: 10.1119/1.2908186�
I. INTRODUCTION

Upper level optics courses present an excellent opportu-
nity for instructors to teach concepts that are applicable in a
wide array of technologies. For example, image formation is
the basis of microscopy and satellite surveillance; interfer-
ence is the basis of thin film spectral filters and sensitive
optical fiber gyroscopes; and diffraction is the basis of grat-
ing spectroscopy.1 Within the past decade, new technologies
such as Digital Versatile Disc �DVD� optical heads, digital
micromirror arrays,2 and optically interrogated microfluidic
cells3 have been developed by combining microfabrication
techniques and optical elements, demonstrating the continu-
ing relevance of optics.

Microscopy is used in cutting edge research and technolo-
gies; there are strong connections between microscopy and
core areas of physics, including electromagnetism and quan-
tum mechanics; and microscope images convey significant
information with great visual impact. For these reasons we
suggest that the upper level optics course be made more at-
tractive by providing further coverage of microscopy. Stu-
dents should also be encouraged to develop a sense of what
issues are involved in optical instrument design and should
begin to develop intuition about the inherent limitations and
sensitivities of optical instruments. A recent paper4 describes
a project for building a confocal microscope.

Current research and development utilizes many different
far-field microscopy techniques in scientific and engineering
disciplines in the service of nanoscience and nanotechnology.
The techniques are as varied as their intended use: for ex-
ample, wide field, fluorescence, and confocal microscopies.5

Users of these techniques are often primarily concerned with
spatial resolution. For diffraction-limited imaging, the small-
est feature that can be resolved has a lateral spatial extent of
approximately6 �0 / �2 NA�, where �0 is the free space wave-
length of the illumination. The numerical aperture of the im-
aging system, NA=n sin �, is characterized by the index of

refraction n of the region between the object and the imaging

758 Am. J. Phys. 76 �8�, August 2008 http://aapt.org/ajp
system �that is, the object space� and by the angular semia-
perture for light collection �. This expression suggests three
ways to decrease the size of the smallest resolvable feature:
decrease the wavelength of the illumination, increase the in-
dex of refraction of the object space, and increase the angular
semiaperture for light collection.

An example of decreasing the illumination wavelength to
reduce the size of the smallest resolvable feature is the de-
velopment of the DVD to succeed the compact disc �CD�.
DVD players use an illumination wavelength of �0=635 or
650 nm, and CD players use an illumination wavelength of
�0=780 nm.7 Another example of decreasing the illumina-
tion wavelength is the development of the scanning electron
microscope. Although a conventional light microscope can
use illumination with wavelengths as low as �400 nm, a
scanning electron microscope uses electrons with de Broglie
wavelengths of less than 0.1 nm, enabling the acquisition of
images of higher resolution.8

Oil immersion objectives have been designed and con-
structed to increase the index of refraction of the object space
since the 19th century.9 The oil used with such objectives has
an index of refraction that matches that of microscope cov-
erslips to eliminate reflections, and so the index of refraction
of the object space is limited to that of the coverslips, that is,
ncoverslip�1.5. Water immersion objectives were also devel-
oped during the 19th century; these are more convenient for
use with aqueous biological samples although the smaller
index of refraction of water, nwater�1.33, produces a smaller
improvement of resolution.

In 1990 Mansfield and Kino described a way to increase
the index of refraction of the object space using a hemi-
spherical solid immersion lens.10 This lens images surface
objects located at the center of curvature of a solid plano-
convex lens �see Fig. 1�b��. By increasing the index of re-
fraction from nair=1 to the index of refraction of the hemi-
spherical solid immersion lens, nSIL, the smallest feature that
can be resolved has a lateral spatial extent of approximately

�0 / �2nSIL sin ��. Hence, the resolution is increased by a fac-
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tor of nSIL compared to the case without the hemispherical
solid immersion lens. In contrast to the fluid immersion
lenses we have described, the resolution increase is limited
only by the refractive index of the material used to construct
the lens: for example, LaSFN9 glass has n=1.85 for visible
radiation of free space wavelength �0=589 nm and Si has
n�3.5 for infrared radiation at �0=1800 nm. The solid im-
mersion lens technique has been demonstrated for CD ROM
and magneto-optical disk storage,11 and has also been used to
detect fluorescence from dye-doped 110 nm diameter poly-
styrene nanospheres12 and photoluminescence from single
quantum dots.13,14

A hemispherical solid immersion lens can also be used to
image subsurface objects.15 In a conventional optical micro-
scope focused below a dielectric boundary, as shown in Fig.
1�c�, refraction at the boundary reduces the object space nu-
merical aperture according to Snell’s law. Incorporation of a
hemispherical solid immersion lens with a refractive index
nSIL which exactly matches the index of refraction of the
substrate nsubstrate circumvents the reduction in object space
numerical aperture by altering the planar boundary geometry.
If the optical contact with the substrate is perfect �that is,
effectively there is no interface�, the resolution is improved
by a factor of approximately nSIL. The enhancement is en-
tirely due to the increase in angular semiaperture �; there is
no change in the object space refractive index. When used to
image subsurface objects, we refer to the hemispherical solid
immersion lens as a numerical aperture increasing lens.16

Figure 2 presents reflected light images of static random
access memory in a Si integrated circuit fabricated with a
0.18 �m process. The device layer of a Si integrated circuit
is buried beneath metal layers from above �making optical
access impossible� and a Si substrate from below. When im-
aging the Si device layer through the Si substrate, the device
layer is a prototypical subsurface structure. The image in Fig.
2�a� is acquired with a 0.4 numerical aperture 100� micro-

Fig. 1. Ray diagram of light focusing in �a� a conventional microscope,
�b� a solid immersion lens microscope, �c� a subsurface microscope, and
�d� a numerical aperture increasing lens microscope.
scope objective and no numerical aperture increasing lens,
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and the image in Fig. 2�b� is acquired with a 0.26 numerical
aperture 10� microscope objective and a Si numerical aper-
ture increasing lens resulting in NA=3.3. The qualitative im-
provement in the numerical aperture increasing lens image is
impressive.

To summarize, solid immersion lenses used with conven-
tional microscopes can be used to obtain images with better
resolution than conventional microscopes. In addition, when
used as numerical aperture increasing lenses, such lenses not
only attain higher resolution but also collect more light from
subsurface objects than a conventional microscope. The in-
creases in resolution and light collection are the primary rea-
sons why these lenses have been used in commercial instru-
ments for integrated circuit failure analysis17 and why we
think they deserve attention in upper-level optics courses.

This paper has three major objectives. First, we describe
the solid immersion lens microscope in the context of geo-
metrical optics and describe its desktop demonstration. Sec-
ond, we describe the angular spectrum representation and its
implementation. Finally, we illustrate how students can be
guided to build intuition about the limitations and sensitivi-
ties of solid immersion lens microscopes and other high ap-
erture microscopes by using numerical calculations to model
microscope performance. The calculations are intended to
complement the excellent WebTOP three-dimensional visu-
alizations developed by Foley et al.18

The organization of the paper is as follows. Section II
gives a brief description of a solid immersion lens micro-
scope and desktop demonstration of such a microscope. Sec-
tion III describes the angular spectrum representation and its
application to a conventional microscope and a solid immer-
sion lens microscope. Section IV presents the results of the
numerical calculations, and discusses how the calculations
may be used to develop intuition about far-field microscopes
in general and microscopes that use solid immersion lenses
or numerical aperture increasing lenses in particular. We con-
clude with a summary in Sec. V.

II. THE SOLID IMMERSION LENS MICROSCOPE

A conventional microscope, as described in both introduc-
tory and upper-level undergraduate textbooks,19,20 consists of
two lenses: an eyepiece and an objective. The objective is the
more important component, and practicing microscopists se-
lect microscope objectives on the basis of magnification, nu-

Fig. 2. Images of SRAM in a Si integrated circuit fabricated with a 0.18 �m
process taken with �a� a 0.5 numerical aperture 100� microscope objective,
�b� a 0.26 numerical aperture 10� microscope objective and a Si numerical
aperture increasing lens resulting in a numerical aperture of 3.3.
merical aperture �NA�, spectral characteristics, and working
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distance �the distance from the end of the objective to the
focal plane�. For a given magnification, an objective with the
highest useable NA that satisfies the requirements for spec-
tral sensitivity and working distance is selected. When using
a hemispherical solid immersion lens, a working distance of
at least the radius, R, of the solid immersion lens is required.
If the lens and the sample with which it shares optomechani-
cal contact are placed into a cryostat to cool the sample �for
example, for photoluminescence measurements�, the work-
ing distance must be significantly larger. This requirement
further constrains the choice of microscope objective.

For a hemispherical solid immersion lens in perfect opto-
mechanical contact with a substrate of equal refractive index
there are two solutions16 for point-to-point �that is, stigmatic�
imaging assuming the geometrical optics approximation: the
first places the object at the center of curvature of the lens,
and the second places the object at a depth of R /nSIL below
the center of curvature of the lens. The first �second� solution
has been referred to as the central �aplanatic� solution.16 As
described in Sec. I, these solutions are characterized by a
lateral resolution that is increased by a factor of nSIL relative
to that in the absence of the hemispherical solid immersion
lens. The lateral magnification of the central �aplanatic� so-
lution is increased by a factor of nSIL �nSIL

2 � compared to the
absence of the hemispherical solid immersion lens.

A desktop demonstration of the central solution involves
the acquisition of a compact microscope with a reticle and
base �Edmund Optics NT61-210� together with a hemi-
spherical BK-7 glass lens �Edmund Optics NT45-937�. We
can place a piece of graph paper with a grid pattern of
0.1 mm pitch beneath the microscope and bring the pattern
into focus by adjusting the vertical position of the micro-
scope tube. We note the number of grid lines that correspond
to a portion of the reticle and then place the hemispherical
solid immersion lens underneath the microscope. The glass
lens has a refractive index of approximately 1.5 and, hence,
we expect to observe an image of the grid that is magnified
by this factor in comparison to the original image obtained
without the solid immersion lens. We can check whether this
magnification is achieved by comparing the number of grid
lines that fit into the same portion of the reticle. Although
somewhat expensive for a single demonstration, it effectively
illustrates the solid immersion lens principle and can be
passed from student to student during class.21

III. THEORY

We present a synthesis of the approaches of Wolf,22 Rich-
ards and Wolf,23 and Novotny and Hecht24 to describe the
angular spectrum representation in a way that is accessible to
upper-level undergraduate students. The angular spectrum
representation is a description of an electromagnetic field in
terms of a superposition of plane and evanescent waves.
From this representation we obtain an expression for the
electric field in the far-field limit and use this expression to
propagate a beam through a focusing lens and then through
either a planar interface or a spherical interface. The propa-
gation through the planar interface models the focusing of
light onto a microscope slide, and the propagation through
the spherical interface models the focusing of light onto a
solid immersion lens. Ultimately, we seek to calculate the
focal fields to estimate the resolution of conventional and

solid immersion lens microscopes.
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A. Angular spectrum representation

We are interested in calculating the electric field E at a
point P= �x ,y ,z� due to the electric field defined throughout
the plane �x ,y ,z=0� in a material that is assumed to be ho-
mogeneous, isotropic, linear, and source-free. We assume
that the electric field is monochromatic with angular fre-
quency �, that is, e�x ,y ,z , t�=E�x ,y ,z�e−i�t. Given these as-
sumptions, the time-independent part of the electric field
must satisfy the vector Helmholtz equation

��2 + k2�E�x,y,z� = 0, �1�

where k=n1�2� /�0�=� /v, n1 is the index of refraction of
the material, �0 is the free space wavelength of the field, and
v is the speed of light in the material. Wolf has shown25 that
when the field propagates toward z= +� �and there is no
reflected wave traveling toward z=−��, E�x ,y ,z� may be
represented by

E�x,y,z� = �
−�

� �
−�

�

ei�kxx+kyy�Ê�kx,ky ;0�eikzzdkxdky , �2�

where

kz = ��k2 − �kx
2 + ky

2��1/2 if k2 � kx
2 + ky

2

i��kx
2 + ky

2� − k2�1/2 if k2 	 kx
2 + ky

2.
�3�

Ê�kx ,ky ;0� is called the angular spectrum because it specifies
the amplitudes of the constituent waves characterized by dif-
ferent combinations of wavenumbers kx, ky, and kz and,
therefore, different wave vectors k= �kx ,ky ,kz� and corre-
sponding propagation directions for each vector component
of the electric field. Equation �2� is the angular spectrum
representation of the field E�x ,y ,z�. The utility of Eq. �2� is

that knowledge of the angular spectrum Ê�kx ,ky ;0� in one
plane ��x ,y ,z=0�� enables the calculation of E anywhere in a
homogeneous, isotropic, linear, and source-free material.

The angular spectrum representation is not the same as the
Fourier transform representation of E because Eq. �2� does
not include an integration over kz. It is also important to
realize that the angular spectrum representation includes con-
tributions from all possible wave vectors k, that is, contribu-
tions from both propagating plane waves and decaying

evanescent waves. If k2�kx
2+ky

2, then kz is real and Ê is
associated with a homogeneous wave26 propagating toward

z= +�. If k2	kx
2+ky

2, then kz is imaginary and Ê is associ-
ated with an inhomogeneous wave26 decaying toward
z= +� or growing without bound toward z=−�.

To proceed we seek an expression for Ê�kx ,ky ;0�. Such an
expression can be obtained by using the fact that we are
ultimately interested in calculating the electric field at points
�x ,y ,z� that satisfy k�x2+y2+z2�1/2=kr�1, where the eva-
nescent components �k2	kx

2+ky
2� make no contribution. That

is, we are interested in calculating the field at a location �for
example, the focus of a microscope objective� that is far, on
the scale of the wavelength, from the surface where the field
is known �for example, the back focal plane of the micro-
scope objective�. We denote the electric field at the location
where it is known by E�, take the limit kr→�, and write Eq.

�2� as
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ne an
E� = lim
kr→�

� �
kx

2+ky
2

k2

ei�kxx+kyy+kzz�Ê�kx,ky ;0�dkxdky , �4�

which, by applying the method of stationary phase,27 yields
the asymptotic approximation

E��ux,uy,uz� = − 2�ikuzÊ�kux,kuy ;0�
eikr

r
, �5�

where

ux =
x

r
, uy =

y

r
, uz =

z

r
. �6�

Equation �5� is a significant result. Physically, the field at a
point P� in the far zone is given by a weighted, single plane
wave with wave vector k=ku= �kux ,kuy ,kuz� traveling di-

rectly toward P�, with the weight −2�ikuzÊ�kux ,kuy ;0� /r
determined in part by the angular spectrum component cor-
responding to that direction. �An alternative point of view is
that the field at point P� is given by a weighted, single

spherical wave with weight −2�ikuzÊ�kux ,kuy ;0�.� This re-
sult is obtained because all other plane waves destructively
interfere at P�. If we relabel kux→kx, kuy→ky, and kuz

Fig. 3. The system under consideration and its equivalent within the domain
a spot of finite size. �b� In the equivalent system rays corresponding to the in
focused to a point. The incident and refracted rays are in the meridional pla
→kz and then substitute Eq. �5� into Eq. �2�, we find
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E�x,y,z� =
ire−ikr

2�
� �

kx
2+ky

2

k2

E��kx,ky�ei�kxx+kyy+kzz�

�
1

kz
dkxdky , �7�

where we have written E��kx /k ,ky /k ,kz /k�=E��kx ,ky�. Note
that the arguments of E� depend only on the direction of the
plane wave propagation and not on the magnitude of the
wave vector. We have suppressed kz in E� because it is a
function of k, kx, and ky. Equation �7� is the electric field E at
a point �x ,y ,z� far from the surface at which the angular
spectrum is known, and is valid for a monochromatic field
propagating toward z= +� in a homogeneous, isotropic, lin-
ear, source-free material. We will use this expression in the
following to calculate the electric field in the focal plane of a
lens.

B. Focal fields

Our aim in this section is to describe the propagation of a
monochromatic field from one material, through a cylindri-
cally symmetric aplanatic lens of focal length f , and into a

eometrical optics. �a� In the physical system a lens focuses a plane wave to
ng plane wave encounter a spherical reference surface and are subsequently
d obey both the sine condition and intensity law.
of g
comi
second material to obtain an expression for the transmitted
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field. We then use Eq. �7� to calculate the field in the second
material near the focal point of the lens. As shown in Fig. 3,
we assume that the index of refraction of the material in front
�back� of the lens is n1 �n2�. If we assume that geometrical
optics is valid �that is, k→��, then the action of the lens can
be described using the sine condition together with the inten-
sity law �both defined in the next paragraph�.28 In essence,
the physical lens is replaced by an equivalent system, also
shown in Fig. 3, that obeys the sine condition and the inten-
sity law.

The sine condition requires each ray impinging upon, or
exiting from, the focus to intersect its conjugate ray �which
propagates parallel to the optical axis� at the surface of a
sphere of radius f known as the Gaussian reference sphere.
The sine condition is �see Fig. 3�b��

h = f sin � , �8�

where h is the distance from the z-axis to the conjugate ray
and � is the angle that the wave vector of the refracted ray,
k2, makes with the +z axis.

The intensity law, as shown in Fig. 3�b� for ray bundles
refracting across the Gaussian reference sphere, is an expres-
sion of conservation of energy. In the absence of absorption,
the rate at which energy carried by a ray bundle passes
through a differential area element in one material is equal to
the rate at which energy carried by the same ray bundle
passes through the corresponding differential area element in
a second material. It allows us to relate the magnitude of the
electric field associated with the ray in material 1 to that in
material 2,

�E2� = �E1�	�1

�2

1/4�n1

n2

�cos � , �9�

where we have used nj =c /v j =�� j� j, j=1,2. Because the
magnetic permeability at optical frequencies of optical mate-
rials such as glass, index-matching fluid, and bulk semicon-
ductors have nearly identical values, the factor ��2 /�1�1/4

�1 and is dropped from the following.
We now express the incident electric field E1 in terms of

the radial and azimuthal �p and s� polarization components in
anticipation of a subsequent interaction with an interface,

E1 = E1
�s� + E1

�p� = �E1 · n1
�n1

+ �E1 · n�1
�n�1

, �10�

where n1
and n�1

are the cylindrical coordinate unit vectors
referred to the symmetry axis of the lens. The ray described
by the field E1 and wave vector k1 is shown in Figs. 3�b� and
4.

We now obtain an expression for the vector field after it
has traversed the Gaussian reference sphere. Upon encoun-
tering the Gaussian reference sphere, the incident ray is re-
fracted and perhaps partially transmitted so that it is now
described by the field E2 and wave vector k2. The effect of
refraction is the mapping of the cylindrical coordinate unit
vectors onto the spherical coordinate vectors n2

and n�2
by

n1
→−n2

and n�1
→−n�2

. We use Eqs. �9� and �10�, the
mapping, and take into account the possibility of partial
transmittance of the field to express the transmitted �that is,

refracted� electric field E2 as
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E2 = − �t12
�s��E1 · n1

�n2
+ t12

�p��E1 · n�1
�n�2

��n1

n2

�cos � ,

�11�

where t12
�s� and t12

�p� are the transmission coefficients of the lens
for the s- and p-polarized field components, respectively.

Because of the transformation of the incident plane wave
into a converging spherical wave, it is convenient to express
E2 in terms of spherical angular coordinates. We do so by
expressing the unit vectors n�1

, n1
, n2

, and n�2
in terms of

the spherical coordinates ��2 ,2�= �� ,� describing the di-
rection of k2, and the Cartesian unit vectors nx, ny, and nz
noting that 1=−� from geometry �see Fig. 4�b��. Equa-
tion �11� yields

E2 = − ��t12
�s�E1 · n1

�− sin 

cos 

0
�

+ �t12
�p�E1 · n�1

�cos  cos �

sin  cos �

− sin �
���n1

n2

�cos � . �12�

To calculate the focal fields, we substitute Eq. �12� into Eq.
�7�. Although this calculation does not present any special
difficulties, we must reconcile the description of E2, ex-
pressed in terms of the spherical angular coordinates in Eq.
�12�, with the angular spectrum representation description in
which E2 is expressed in terms of the Cartesian components
of k2. We give an explicit example in the following to show
how this reconciliation is achieved so that the focal field can
be calculated in practice when we choose the incident field to
be a plane wave polarized in the x direction such that

E1 = E1��,�nx. �13�

We replace E� in Eq. �7� and note that the Cartesian compo-
nents of k2, denoted as k2x

=kx, k2y
=ky, and k2z

=kz, are re-

Fig. 4. A perspective of the refraction occurring at the Gaussian reference
sphere a radial distance f from the coordinate origin. �a� Incident wave
vector k1 refracts across the reference sphere at a point r�. The refracted
wave vector k2 propagates with spherical angular coordinates � ,��. �b�
Projection of the component of k2 parallel to the xy-plane, perpendicular to
the z-axis. The projection illustrates the relation between the azimuthal co-
ordinate 1 in region 1 of the optical system to the azimuthal coordinate 
defining the propagation direction of wave vector k2 in region 2 of the
optical system.
lated to the spherical coordinates � and  by
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kx = k sin � cos , ky = k sin � sin , kz = k cos � .

�14�

The area element dkxdky can be expressed as

dkxdky = cos ��k2 sin � d� d� . �15�

In this way we obtain

E��,�,z�

=
ikfe−ikf

2�
�

0

�max

d��
0

2�

d��− t12
�s�E1��,�sin �

�− sin 

cos 

0
� + �t12

�p�E1��,�cos �cos  cos �

sin  cos �

− sin �
��

��n1

n2

�cos �eik� sin ��cos�−��+ikzcos��sin � , �16�

where r has been set equal to the lens focal length f , �max is
the maximum angular semiaperture by the aplanatic focusing
lens, �= �x2+y2�1/2, and �=tan−1�y /x�.

To calculate E�� ,� ,z�, we must specify E1�� ,�. We now
make the additional assumption that the incident plane wave
has a Gaussian distribution in the transverse plane such that

E1��,� = E0e−�x2+y2�/w0
2

= E0e−f2 sin2 �/w0
2

= E0e−sin2 �/�f0 sin �max�2
= E0fw0

��� , �17�

where w0 is the half-width of the Gaussian distribution and
f0�w0 / �f sin �max� defines the filling factor. If the filling
factor f0�1 �f0�1�, then the beam cross section is much
larger �smaller� than the useable aperture of the lens, that is,
the aperture is overfilled �underfilled�. The function fw0

��� is
referred to as the apodization function and describes the pro-
file of the incident field before it is focused �for example, the
objective lens of a microscope�. We assume this form for E1
because it is a typical incident field in a practical confocal
microscope. It is possible to choose other forms for E1 �for
example, higher order Gaussian modes�, and making such
choices is a first step toward focal field engineering, a topic
of great current interest.29

Given the assumed form for E1, substitution of Eq. �17�
into Eq. �16� yields

E��,�;z� =
ikfE0e−ikf

2
�n1

n2
I0 + I2 cos 2�

I2 sin 2�

− 2iI1 cos �
� �18�

as shown in Appendix A. Here I0, I1, and I2 are integrals over
�, defined in Appendix A, which depend on the coordinates �
and z as well as the transmission coefficients t12

�s� and t12
�p�.

C. Focusing through a planar interface

To calculate the focal fields that result upon transmission
through a planar interface, it is useful to initially express the
field in terms of the Cartesian components of k2 instead of
the spherical coordinates �� ,�. We start by using Eq. �14� to

express E2, given by Eq. �12�, in terms of these components,
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E2 = − �t12
�s�E1 ·  ky

− kx

0
�− ky

kx

0
�

+ t12
�p�E1 · − kx

− ky

0
� kxkz/k

kykz/k
− k�

2 /k
�� 1

k�
2 �n1

n2
�kz

k
, �19�

where

k�
2 = kx

2 + ky
2. �20�

When the propagating field encounters a planar interface lo-
cated at z=z0, it may be transmitted and/or reflected. Upon
transmission through the interface, each plane wave constitu-
ent of the field characterized by the wave vector k
= �kx ,ky ,kz� is transformed so that kz→k3z

and k→k3 for the
terms inside the brackets �¯� in Eq. �19�. This transforma-
tion does not apply to the factor of kz /k outside the braces
because this factor is due to the application of the intensity
law when the incident field traversed the reference sphere,
that is, to maintain energy conservation. Consequently, the
transmitted field E3 may be expressed as

E3 = − ei�kz−k3z
�z0�t23

�s�t12
�s�E1 ·  ky

− kx

0
�− ky

kx

0
�

+ t23
�p�t12

�p�E1 · − kx

− ky

0
� kxk3z

/k

kyk3z
/k

− k�
2 /k3

�� 1

k�
2 �n1

n2
�kz

k
,

�21�

where t23
�s� �t23

�p�� is the amplitude transmission coefficient of
the s-component �p-component� of the field from material 2
to material 3, and the associated phase factor ei�kz−k3z

�z0 re-
sults from the position of the interface at z=z0.

To calculate the transmitted field near the focus, we sub-
stitute Eq. �21� into Eq. �7� with the additional change that
the factor of kzz in the argument of the exponential phase
factor is changed to k3z

z to account for propagation of the
field in material 3 �instead of material 2�. As in Sec. III B, we
provide an explicit example of how such a calculation is
done.

We again assume that the incident field has a Gaussian
profile and is directed along the x-axis; that is, E1 is given by
Eq. �13�. The substitution of Eq. �13� into Eq. �21�, together
with the assumption t12

�s�= t12
�p�=1, yields

E3 = e2i�kz2
−kz3

�z0�− t23
�s�E0fw0

���ky− ky

kx

0
�

+ t23
�p�E0fw0

���kxkxk3z
/k3

kyk3z
/k3

− k�
2 /k3

�� 1

k�
2 �n1

n2
�kz

k
. �22�

As shown in Appendix B, substitution of Eq. �22� into Eq.

�7� yields
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E��,�;z� =
ikfE0e−ikf

2
�n1

n2

�I00t�s� + I01t�p� + �I20t�s� − I21t�p��cos 2�

�I20t�s� − I21t�p��sin 2�

− 2iI12t�p� cos �
� .

�23�

Here Inlt��� with n , l=0,1 ,2 and �=s , p are integrals over �
defined in Appendix B which depend on the coordinates �
and z as well as the transmission coefficients t23

�s� and t23
�p�.

D. Application to solid immersion lens/NAILs

We saw in Sec. III B how to apply the angular spectrum
representation to calculate focal fields in a uniform medium;
such fields can be produced when using an oil immersion
objective. Another technologically important application of
the angular spectrum representation is that of the solid im-
mersion microscope. When the planar surface of a hemi-
spherical solid immersion lens is placed at the focus of a
conventional microscope, the convergent rays from the ob-
jective are all normally incident on the hemispherical surface
of the lens. Consequently, only one transmission amplitude is
required to describe all of the rays. Furthermore, the hemi-
spherical surface is an equiphase surface for the field and we
can, therefore, use the results of Sec. III B to calculate the
fields at the planar surface of the solid immersion lens.

We begin with Eq. �7�, which is the electric field beyond
the lens �that is, the microscope objective� but not yet in the
solid immersion lens. The electric field just inside the hemi-
spherical surface of the solid immersion lens differs from
that just outside the lens in two ways: the amplitude is di-
minished, as accounted for by the transmission amplitude
coefficient t23

� for normal incidence from material 2 to mate-
rial 3, and by the change in wavenumber from k2→k3
=2�nSIL /�0. The electric field may be written as

E��,�;z� =
ikfE0e−ikf

2
�n1

n2
t23
�I0� + I2� cos 2�

I2� sin 2�

− 2iI1� cos �
� , �24�

where In� is the same as In for n=1,2 ,3 except that k2 is
replaced by k3.

So far, all that we have presented assumes an ideal system:
a perfectly manufactured solid immersion lens that is per-
fectly aligned with an illumination beam with a Gaussian
profile. Even with the greatest care, such a system is unreal-
izable in practice because there will be slight imperfections
in the lens such as asphericity and surface roughness that
degrade the performance of the lens. In addition, when using
a hemispherical solid immersion lens as a numerical aperture
increasing lens to image subsurface objects, an air gap may
exist between the planar surface of the solid immersion lens
and the substrate. The presence of a sufficiently large gap can
degrade the performance of the lens.16 The multiple reflec-
tions at the interfaces that the solid immersion lens shares
with its environment may also degrade performance.

Here we model the aberration that describes solid immer-
sion lens asphericity. The aberration enters into the descrip-
tions given previously though an aberration function � that

appears in the phase of the exponential in the integrand of
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the integrals In, for example eikz cos �→ei�kz cos �+��. Because
the aberration function is present in the phase, we expect that
any aberration on the order of the wavelength will strongly
influence the intensity in the image region.

We model the asphericity of the solid immersion lens as a
deviation � from the ideal solid immersion lens radius R.
This radial deviation is

� = �R cos � , �25�

where �R�0 is the maximum deviation. This model of the
asphericity produces a solid immersion lens that is elongated
along the direction of the symmetry axis. The corresponding
aberration function � is then obtained by calculating the
phase difference that results from the presence of the addi-
tional lens material,

� = �k3 − k�� = �k3 − k��R cos � . �26�

This model for the asphericity ignores the small change in
the amplitude transmission coefficient that results from the
change in incident angle relative to the local surface normal.

IV. RESULTS AND DISCUSSION

The theoretical prescriptions presented in Sec. III were
implemented by writing programs in MATLAB.30 These pro-
grams can serve as an aid for those who are learning to
design microscopes to achieve specific research goals, for
example, imaging subsurface objects that emit infrared radia-
tion. Although the programs implement the specific micro-
scope configurations described in Sec. III, they may be
adapted to describe microscopes of different configurations.
We explore three examples involving different material com-
binations in the following.

The first example is that of focusing through a lens into a
second material. This situation can arise in optical trapping
experiments where a particle suspended in water is trapped
in the focused field delivered by a water immersion objec-
tive, or in biological imaging when using an oil-immersion
objective to obtain high resolution. As a reference case, we
consider the focusing into air of a x polarized Gaussian beam
through a 20� microscope objective with a numerical aper-
ture of 0.4. This example is intended to mimic the optics in a
conventional microscope. The corresponding distribution of
�E�2 / �Emax�2 in the xy-plane �the focal plane of the objective�
is shown in Fig. 5�a�. Also shown in Fig. 5 is the xy-plane
�E�2 / �Emax�2 distribution for focusing into oil �Fig. 5�b�� as-
suming a 100� microscope objective with NA=1.4 and an
object space index of refraction of n2=1.518. The final dis-
tribution of �E�2 / �Emax�2 in the xy-plane, shown in Fig. 5�c�,
is for focusing into a Si hemispherical solid immersion lens
assuming the same 20� microscope objective �numerical ap-
erture of 0.4� and an object space index of refraction of n2
=3.5. In Figs. 5�d�–5�f� we plot linecuts of the focal plane
�E�2 / �Emax�2 distribution along the lines defined by �x ,y
=0,z=0� and �x=0,y ,z=0�. The most salient feature of Fig.
5 is the asymmetry in the focal plane distribution when fo-
cusing with a high numerical aperture objective into oil
�Figs. 5�b� and 5�e��. If we apply the Houston criterion,31

which defines the resolution as the full width of the
�E�2 / �Emax�2 distribution at half the maximum value, to the
linecuts in Fig. 5�e�, we find a diffraction-limited resolution
of 0.50� along the x-direction and 0.38� along the

y-direction. Though not obvious in Figs. 5�a�, 5�d�, 5�c�, and
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5�f�, there is also a slight asymmetry in the focal plane dis-
tributions for the other two cases of focusing with a low
numerical aperture objective. In these cases we find in Fig.
5�d� �Fig. 5�f�� a diffraction-limited resolution of 1.44�0
�0.42�0� along the x-direction and 1.40�0 �0.40�0� along the
y-direction.

The second example is that of focusing through a planar
interface. This situation can arise when focusing through an
oil immersion objective and index-matched cover slip into an
aqueous sample. Here, we assume a 100� microscope ob-
jective with NA=0.92, n2=1.517, and n3=1.33. The result-
ing intensity distribution of �E�2 / �Emax�2 in the xy-plane is
shown in Fig. 6�a�. From the linecuts in Fig. 6�b� we find a
diffraction limited resolution of 0.58�0 in the x-direction and
0.33�0 in the y-direction. In comparison to the case of focus-

Fig. 5. Plot of �E�2 / �Emax�2 in the xy-plane for focusing a x-polarized plane
wave into �a� air with a 0.4 numerical aperture 20� objective, �c� oil with a
1.4 numerical aperture 100� objective, and �e� Si hemispherical solid im-
mersion lens with a 0.4 numerical aperture 20� objective. The black solid
lines in �a�, �c�, and �e� indicate the directions along which we take linecuts
of the �E�2 / �Emax�2 distribution to generate �b�, �d�, and �f�, respectively. The
linecuts are along �x ,y=0,z=0� and �x=0,y ,z=0�.

Fig. 6. �a� Plot of �E�2 / �Emax�2 in the xy-plane for focusing a x-polarized p
aperture 100� objective. �b� Linecuts of the �E�2 / �Emax�2 distribution a

�x=0,y ,z=0�.
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ing into oil only we find that the resolution in the x-direction
becomes worse, whereas the resolution in the y-direction im-
proves.

The third example is focusing into a Si hemispherical solid
immersion lens which deviates from the ideal spherical
shape by a smooth radial deviation �=�R cos �. Because we
found nearly symmetric �E�2 / �Emax�2 distributions in the focal
plane for the different values of �R, we plot linecuts along
�x ,y=0,z=0� in Fig. 7 for �R=0,�0 ,2�0 ,5�0 with all line-
cuts normalized to the maximum of �R=0. As the aspheric-
ity increases, the resolution degrades and the field amplitude
at the Gaussian focus decreases. When �R=5�0, the aberra-
tion has resulted not only in an enlarged focal spot, but also
a redistribution of the electromagnetic energy into two side
lobes.

These results model the performance of different micro-
scopes as well as the changes in performance when an aber-
ration is introduced and provide an introduction to advanced
microscopy concepts for students in the upper level optics
courses. Students can use and adapt the MATLAB code to
explore situations of their own choosing. It is hoped that

wave through oil and a planar interface into water with a 0.92 numerical
the black solid lines in �a�. These lines are along �x ,y=0,z=0� and

Fig. 7. Linecuts of �E�2 / �Emax�2 along �x ,y=0,z=0� in the xy-plane for
focusing into a Si hemispherical solid immersion lens with an aberration of
�R cos � for �R=0,� ,2� ,5�.
lane
long
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such an exploration will inspire students to push the limits of
microscopy, and the use of focal fields, perhaps through focal
field engineering techniques as in 4�29,32 or I5M
microscopy33 and/or making use of nonlinear effects that are
the basis of current efforts to beat the diffraction limit.

V. SUMMARY

We have described the solid immersion lens microscope
and the angular spectrum representation that is appropriate in
upper level undergraduate optics courses, and have illus-
trated how students might be guided to build their intuition
about the limitations and sensitivities of solid immersion lens
microscopes by using numerical calculations to model its
performance. The calculations show that the solid immersion
lens improves the resolution that can be achieved by a con-
ventional microscope although this improvement is sensitive
to the dimensions of the solid immersion lens.

It is important for students to have the sense that they are
learning concepts that are not only fundamental but are of
current interest. Microscopy concepts fit both of these crite-
ria because of the connections to the foundations of physics,
and because of the widespread use of microscopes. The topic
of microscopy can be presented at varying levels of rigor and
is in the reach of upper level undergraduate students. It is
empowering for students to realize that they can understand
seminal research literature such as the paper by Wolf.22
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APPENDIX A: MATHEMATICAL DETAILS
OF FOCUSED FIELDS

We provide details of how to obtain Eq. �18� from Eq.
�16�. We begin by substituting Eq. �17� into Eq. �16� and
taking terms that depend only on � out of the integral over 
to obtain

E��,�;z�

=
ikfE0e−ikf

2�
�n1

n2
�

0

�max

d�fw0
����cos � sin �eikz cos �

��
0

2� �− t12
�s� − sin2 

sin  cos  �

0
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+ t12
�p� cos2  cos �

sin  cos  cos �

− cos  sin �
��eik� sin � cos�−��d .

�A1�

The integrals over  in Eq. �A1� can be evaluated by using
the identities

�
0

2�

cos neiu cos�−��d = 2��in�Jn�u�cos n� , �A2�

�
0

2�

sin neiu cos�−��d = 2��in�Jn�u�sin n� , �A3�

where Jn�u� is the Bessel function of order n, together with
the trigonometric identities sin2 = �1−cos 2� /2,
sin  cos = �sin 2� /2, and cos2 = �1+cos 2� /2.

If we define the integrals

I0 � �
0

�max

d�fw0
����cos � sin �J0�k� sin ��eikz cos �

��t12
�s� + t12

�p� cos �� , �A4�

I1 � �
0

�max

d�fw0
����cos � sin �J1�k� sin ��eikz cos �

��t12
�p� sin �� , �A5�

I2 � �
0

�max

d�fw0
����cos � sin �J2�k� sin ��eikz cos �

��t12
�s� − t12

�p� cos �� , �A6�

we can write

E��,�;z� =
ikfE0e−ikf

2
�n1

n2
I0 + I2 cos 2�

I2 sin 2�

− 2iI1 cos �
� . �A7�

APPENDIX B: TRANSMISSION THROUGH
A PLANAR INTERFACE

Here we provide details of how to obtain Eq. �23� from
Eq. �22�. We begin by expressing Eq. �22� in terms of the
spherical angular coordinates �� ,�. To do so, we make use
of Eq. �14� and the relation

cos �3 = �1 − sin2 �3�1/2 = 	1 −
n2

2 sin2 �

n3
2 
1/2

=
n2

n3
	n3

2

n2
2 − sin2 �
1/2

=
n2

n3
g��� �B1�
to obtain
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E3 = eik�cos �−g����z0E0fw0
����t23

�s� sin2 

− cos  sin 

0
�

+ t23
�p� cos2 �n2/n3�g���

cos  sin �n2/n3�g���
− cos  sin ��n2/n3�

���n1

n2

�cos � . �B2�

If we use several trigonometric identities as in Appendix A,
we can write Eq. �B2� as

E3 = eik�cos �−g����z0
E0

2
fw0

����t23
�s��1 − cos 2�

− sin 2

0
�

+ t23
�p��n2/n3��1 + cos 2�g���

sin 2g���
− 2 cos  sin �

���n1

n2
,�cos � .

�B3�

The transmitted field Et can be calculated by adapting Eq. �7�
as described in Sec. III C,

Et�x,y,z� =
ife−ikf

2�
� �

kx
2+ky

2

k2

E3�kx,ky�ei�kxx+kyy+k3z
z�

�
1

kz
dkxdky . �B4�

We express Et in terms of cylindrical coordinates, write the
integral in terms of spherical coordinates, evaluate the inte-
grals over  via Eqs. �A2� and �A3�, and define the following
integrals:

In0t��� � �
0

�max

d�fw0
����cos � sin �eik cos �z0eikg����z−z0�

�Jn�u�t23
��� sin � , �B5�

In1t��� � �
0

�max

d�fw0
����cos � sin �eik cos �z0eikg����z−z0�

�Jn�u�t23
����n2/n3�g��� , �B6�

In2t��� � �
0

�max

d�fw0
����cos � sin �eik cos �z0eikg����z−z0�

�Jn�u�t23
����n2/n3�sin � , �B7�

where n=0,1 ,2, �=s , p, and u�k� sin �. We finally obtain
Eq. �23�:

E��,�;z� =
ikfE0e−ikf

2
�n1

n2

�I00t�s� + I01t�p� + �I20t�s� − I21t�p��cos 2�

�I20t�s� − I21t�p��sin 2�

− 2iI12t�p� cos � .
� .

�B8�
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